分析仪的“系统误差模型”。如果你去看各种论文或书籍,都喜欢给你下面这张图,然后列一大堆公式,先把你搞晕,这个是传统的10项误差模型。也有文献叫12项误差模型,包含了2个isolation误差项,但是现代网分基本做得很好了,这个项可以忽略,故大部分都讲10项误差模型。
我们就来看看下图的简化结构和误差模型吧,我们以测S21为例,实际测的是b2和a1的功率比b2-a1(为了方便,这里功率统一采用对数单位dBm),但是在图中可以看到,b2和a1是不能直接测到的,必须通过功分器在1端口的参考接收机通道测出a1’,然后在2端口的测量接收机通道测出b2’,因此(b2’-a1’)和(b2-a1)之间的差值,我们就定义为系统误差。
所谓校准,就是测量一组已知器件(即校准件或称标准件),根据仪器接收机实际测试的结果和已知校准件的特性比较,联列方程组,解出上述的误差项eij,从而为后续的测量提供修正。
这里需要对校准件做进一步说明,在同轴系统中,校准件通常是开路、短路、匹配和直通,但是由于现实中无法实现理想的开路、短路、匹配和直通,因此需要正确的标定校准件的“特征数据(charristicdata)”,例如开路应该表征为一个寄生电容和一段传输线;短路表征为寄生电感和一段传输线,匹配一般表征为一个理想50欧姆,现代网络分析仪也可以对匹配的不理想性进行表征。如下图所示。
一般在校准件的附带的存储设备里面,都以文件形式定义,现在高端的校准件一般都会配备一个优盘,里面存着这套校准件的特征数据(一般每套校准件都有自己的***),严格讲每套校准件要和自己配套的特征数据配合使用。对于低频的同轴校准件,其差异性不是很大,所以大部分商用网络分析仪都内置了常见型号的校准件“特征数据”的典型值(typical)。
对于直通校准件,必须精确的表征(或者说“告诉”网络分析仪)其插损和电长度,严格来讲还需要知道其S11和S22,但是目前网络分析的模型都是把直通当一个理想50欧姆的有损传输线来处理的。
现代网络分析仪普遍采用了2N接收机架构,例如2端口网络分析仪的接收机数目为4,即每个端口都有自己的参考接收机和测量接收机,因此共有7个独立的误差项(即7个未知数),这样就不需要预先知道Thru校准件的参数了,只要保证Thru校准件互易(Reciprocal),只需列7个方程就能把校准完成。并且同时可以精确的测试出Thru校准件的插损和电长度。
基本上所有网络分析仪都支持传统的TOSM(有些厂商叫作SOLT-Short Open LoadThrough),使用这种方法的前提是----必须正确的定义Through的特征特征参数,就是说校准件的参数文件中必须包含Through的参数,而且必须要使用这个特定的Through,不能用别的Through或者转接头代替。
TOSM校准之后,直接测量Through的结果就是校准件模型中对应的“特征数据”(即优盘里存储的数据),有一定的插损和相位。这一点是需要注意的,很多使用者一直有一个认识的误区,认为这时候的插损应该是0,相位也是0,这是不正确的。
对于UOSM校准,校准后直接测量Through校准件,这时网络分析仪就把Through直接当成一个被测件来处理,测到的插损和相位就是这个校准件实际的特性。
值得一提的是,UOSM校准非常适合两端为不同接头类型的器件的测试。例如一个被测件的输入是N型接头,输出是SMA接头。在测试这种器件时,可以在网分的一端使用N型电缆,另一端使用SMA型电缆,校准的时候,可以在N型接头这边使用N型的Open、Short、Match校准件校准,在SMA型接头这边使用SMA的Open、Short、Match校准件。在校准Through的时候,使用任意一个质量较好的N-SMA转接头即可,校准完之后,参考面就是电缆的N型接头和SMA型接头的末端。因此UOSM校准方法也可以用于测试一些接头适配器和射频电缆。
另外UOSM还有一个优点,假设两个人,分别用不同的Thru(不一定要是校准件级别的,只要是正常的转接头即可)去校准,当然Open、Short、Match是一样的,最终的校准结果是一致的,因为根本不需要“告诉”仪器Thur的特征参数,Thru可以是任何互易的转接头。
首先这里要强调,用校准件去验证,实际测试的结果不是“理想”参数,而是校准件“特征数据”。
因此直接测试Open,并不是在史密斯圆图最右端开路位置的一圈点,而是一个沿等驻波比圆,向源(generator)方向的一条曲线中的开路校准件实际上是一个寄生电容串联一段有损传输线,对于不同频率传输线引起的相移(包括损耗)是不一样的,因此聚在一起的数百个扫频点,每个点的频率是不一样的,相移各不相同,就显示成一个曲线度,原因同上。
同理如果测试Short校准件的S11,看到的也是在史密斯圆图左端短路点附近,沿等驻波比圆,向源(generator)方向的一条线,曲线的长度和扫频范围有关。
至于Match,由于目前的网络分析仪一般把它当作理想50欧姆匹配来处理的。所以校准完再次接上Match校准件,其反射系数非常低,一般能达到-60dB左右,这个值可以理解为“有效系统数据”即补偿后的剩余误差。值得注意的是,对于Match会有一个特殊的所谓“记忆(re-recognition)”现象,也就是说用某套校准件校准,如果还是测刚刚校准用的那个Match,反射系数可以到-60dB左右,如果换任何其他一套校准件中的Match,都不可能达到-60dB,一般只能达到-30dB左右。这主要是因为,低频段的网络分析仪都把Match当作理想50欧姆,校准算法仅仅根据当前测试的这个Match的结果来补偿,而实际上每个Match的物理特性都是略有差别的,因此换上另外的Match就不可能达到-60dB左右的反射系数。当然理想的50欧姆也是不可能实现的,这也是影响测量不确定度的一个因素,目前商用网络分析仪在测试反射系数,特别是反射系数特别小的器件的时候(-25dB到-35dB),不确定度一般都能达到2-3dB。
因此有必要再次强调,任何匹配校准件线dB左右。在校准时,系统将它当作理想的匹配,就得到了-60dB这样低的结果。
现代网络分析仪也支持用S参数包来定义校准件,如果采用S参数包文件定义,校准后再测量Open,Short和Match,测量的结果就和S参数定义包里面的数据完全一样。特别指出这时候在用刚刚校准用的Match校准件接上去,一般也就是-30dB左右(和定义Match的S参数包文件一模一样),不再会出现-60dB的“记忆效应”现象。值得注意的是,目前的商用校准件通常只是对Open、Short、Match使用S参数包,对Through还是使用有损传输线的模型。这主要是由于传输线模型已经能比较精确的描述其特性了,由于Through是2端口器件,必须是有S2P文件,而如果用了S2P文件,文件的参数必须和校准件的连接的方向有关,而实际中也不方便规定校准的时候Through的连接方向。
TOSM校准完之后,Through校准件不拿掉,直接测试S11或S22,此时测得的是有效负载匹配(可以当做接近理想50欧姆)串联一段有损传输线的结果,如下图所示,是在史密斯原图中心匹配点附近的一个小圆圈,随着频率的变化呈现一定的复数阻抗特性,逐步偏离50欧姆原点。由于Through校准件是当作理想50欧姆的有损传输线来处理的,没有考虑Through本身的S11反射,这个值换算成反射系数用dB表示仍然很小,一般网络分析仪在8GHz以下,仍然有-50dB左右。
当然,如果校准件采用的S参数包文件,这时候的试S11或S22一般也只能到-30dB左右。
TOSM校准在测量直通时,仍然要测试S11和S22,并对其补偿,因此校准之后,对当前使用的这个Through校准件也有所谓“记忆(re-recognition)”现象,此时换成另外任何一个Through之后,都不可能达到-50dB的回波损耗的,甚至仅仅把当前这个Through换一个方向连接,也达不到-50dB这个量级。
但是USOM对Through的S11和S22没有做测量和补偿,Through甚至是未知的,更没有把它描述为一个理想有损传输线,因此就没有所谓的“记忆(re-recognition)”现象。校准完之后,直接测试Through,其S11和S22就是这个Through本身的端口反射系数,一般在-30dB以下。但是这才是合理的,TOSM校准后的结果实际上是“记忆(re-recognition)”效应的结果,是过于理想化的仪器的剩余误差,不能反映校准件和系统的真实特性。
虽然UOSM校准之后,直接测试校准件的结果没有TOSM那么理想,但是UOSM才是更精确的校准方法,其结果更能真实的反映校准件的特性。
总而言之就是:UOSM校准以及S参数包定义的校准件模式,校准后直接用校准件验证的结果更接近真实情况,但是结果不是那么好看。
TOSM校准(并且在没有正确定义thru的情况下)以及理想的match校准件定义模式下,直接用校准件验证的结果过于理想,但是很讨人喜欢,具有一定迷惑性!
,型号是安捷伦PNA-X,N5247A.请问我该如何做呢?目前刚Lab view入门。
供应维修 Agilent E8362C 欧阳R:*** 回收工厂或个人、库存闲置、二手仪器及附件。长期 专业销售、维修、回收 高频 二手仪器。温馨提示:如果您
结果的精度就受限了。尽管人们想出了很多方法克服这个问题:例如采用“理想的”宽带功分器或耦合器,但是这些方法都无法进行全
ZVA和ZVT,通过添加新的选件,就可以实现精确的宽带差分器件测量,并且操作方便。
是一种功能强大的仪器,正确使用时,可以达到极高的精度。它的应用也十分广泛,在很多行业都不可或缺,尤其在测量无线射频(RF)元件和设备的线性特性方面非常有用。现代
的port不用的时候加上防尘套;对测试电缆进行标号,使得VNA每个port尽可能固定连接某个电缆;对测试电缆不用时,也需要加上防尘套;尽量不用很脏的测试电缆等。
中最独特的元件是用作射频功率检测器件的二极管检波器。这样便可实现对射频特性的十分经济宽带幅度测量。
是一种功能强大的仪器,正确使用时,可以达到极高的精度。它的应用也十分广泛,在很多行业都不可或缺,尤其在测量无线射频(RF)元件和设备的线性特性方面非常有用。
参数,如输入反射系数、输出反射系数、电压驻波比、阻抗(或导纳)、衰减(或增益)、相移和群延时等传输参数以及隔离度和定向度等。
传送具有信息内容的信号时,我们最关心的是如何以最高效率和最小失真使信号从一处传递
10MHz-40GHz主要技术指标 * 104 dB的动态范围,0.006 db的迹线
)·标准配置的源衰减器,T偏置和直接接收器访问·与 Agilent 平衡元件测量和噪声参数
兼容================================Agilent/安捷伦E8358A
内置的S-参数测试装置提供正向和反向的全范围幅度和相位测量。HP8720ES矢量
的产品描述 :·频率范围:300KHz - 1.3GHz[S参数测量]·100dB的动态范围·50Ω或75Ω
阻抗·1 Hz分辨率的合成信号源·窄带和宽带检测·实时扫描速度(50ms
(Ecal)COM/DCOM 和SCPI 编程可选源衰减器、直接接收器和源接入Windows2000 操作
,由测试信号源、功率分配器、定向耦合器、驻波比桥、测试接收机、检测器、处理器及显示等部分构成;主要用来测试高频器件、电路及
欧阳R:***Q1226365851回收工厂或个人、库存闲置、二手仪器及附件。长期 专业销售、维修、回收 高频 二手仪器。罗德与施瓦茨 Rohde&
欧阳R:***Q1226365851回收工厂或个人、库存闲置、二手仪器及附件。长期 专业销售、维修、回收 高频 二手仪器。罗德与施瓦茨 Rohde&
。 安泰测试是西北地区电子测试测量行业专业的综合服务商,服务各大高校、研究所、企事业单位,收到客户广泛好评。欢迎有需求,有测试需求的客户来电,访问公司官网进行咨询。
的问题,比如TRL和ECAL,我想问一下正确的操作步骤,还有我怎样去判断自己校验的准不准呢?
吗? 以上来自于谷歌翻译 以下为原文Questions and Answers
成为必要时,企业因此要确保他们的产品符合严格的规范,同时还要提高测试处理能力。为了加速无线通信元器件的设计和生产,R3770和R3768
成为必要时,企业因此要确保他们的产品符合严格的规范,同时还要提高测试处理能力。为了加速无线通信元器件的设计和生产,R3770和R3768
成为必要时,企业因此要确保他们的产品符合严格的规范,同时还要提高测试处理能力。为了加速无线通信元器件的设计和生产,R3770和R3768
2020年7月16日,普源精电(RIGOL)发布RSA5000N/3000N系列信号
参数,如输入反射系数、输出反射系数、电压驻波比、阻抗(或导纳)、衰减(或增益
包含;1.激励信号源; 提供被测件激励输入信号2.信号分离装置, 含功分器和定向耦合器件,分别提取被
HP8753D,广泛使用于天线测试、电路测试、元器件测试和计量检定等领域。进行可靠的
成为必要时,企业因此要确保他们的产品符合严格的规范,同时还要提高测试处理能力。为了加速无线通信元器件的设计和生产,R3770和R3768
成为必要时,企业因此要确保他们的产品符合严格的规范,同时还要提高测试处理能力。为了加速无线通信元器件的设计和生产,R3770和R3768
器、滤波器、隔离器、环行器、衰减器、天线、适配器、电缆、波导、传输线等。矢量
是一种功能强大的仪器,正确使用时,可以达到极高的精度。它的应用也十分广泛,在很多行业都不可或缺,尤其在测量无线射频(RF)元件和设备的线性特性方面非常有用。现代
确实不太好理解,一般只有研发矢网或者专攻测试技术的人员才会深入探究。使用矢网测试
确实不太好理解,一般只有研发矢网或者专攻测试技术的人员才会深入探究。使用矢网测试
、单端口反射、短路响应、全SOLT双端口、直通响应、全TRL双端口、直通响应+隔离、全SOLT3端口。 3、